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1. 

When large space structures need to change orbits or move to indicated positions, it may
be thrusted. In such cases, plate-like structures may undergo dynamic instability due to
bending by follower forces. For plate type structures, many researchers have studied the
dynamic stability [1–6]. Studies on all free-edges rectangular plate structures under end
follower forces have been performed by Higuchi et al. [7–9], but intermediate follower
force cases have not been investigated.

Now, we investigate the dynamic stability of a rectangular plate which is subjected to
intermediate follower forces. If a follower force is acting at the intermediate section of a
plate, two regions of the plate must be considered. One region undergoes compressive load
distribution, and the other region undergoes tensile load distribution because of plate
inertia force distribution. In this study, with the changing of the acting line position of
the intermediate force, the dynamic stability of the rectangular plate will be reported. In
addition, the change of the dynamic stability property will be investigated with the change
of the aspect ratio of the plate.

2. 

Figure 1 shows the free–free plate model subjected to follower forces at intermediate
section, and the follower force has constant value q per unit width.

In classical plate theory, kinetic energy is as follows:
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where, m̄ is mass of the plate per unit area, t is time and w is the plate deformation.
Strain energy is
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When follower force q acts on the intermediate section of the plate, potential energy is
as follows:

V=−g
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Figure 1. Plate model under intermediate follower forces.

where

sign (x)=6x−1+ x
(0E xQ a)
(aQ xR 1)

and a is the non-dimensional parameter (0E aE 1) which indicates the acting location of
the follower force.

In the intermediate follower force case, load distribution must be considered in terms
of two regions, as shown in Figure 2, i.e., compressive and tensile regions.

Non-conservative virtual work done by non-conservative component of q is as follows:

dWNC =−g
b

0 g
a

0

q(1w/1x)d�(x− aa)dw dx dy (4)

where d�(x− aa) is Dirac’s delta function.

Figure 2. Axial load distribution for the intermediate follower force.
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Figure 3. Eigenvalue curves: (a) end follower force (a=1·0); (b) intermediate follower force (a=0·75).

For a classical plate theory, Hamilton’s principle can be written as

g
t2

t1

(dT− dU− dV+ dWNC ) dt=0 (5)

By introducing Hamilton’s principle and assuming w(x, y, t)=w(x, y) eivt, we obtain
eigenvalue equations as follows;

det[−v̄
2M� +K� +Q� ]=0 (6)

where M� is mass matrix, K� is strain energy stiffness matrix, and Q� is stiffness matrix due
to q.

When we introduce non-dimensional parameters such as

j= x/a, h= y/b, l= a/b, V2 = m̄v̄2a4/D, Q= qa2/D (7)

Then, equation (6) can be written in the normalized form as,

det(−V2M+K+QG)=0 (8)
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Figure 4. Critical load (Qcr ) versus aspect ratios (l) (1·0E lE 10·0).
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Figure 5. Critical load (Qcr ) versus aspect ratios (l) (0·1E lE 1·0).
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Figure 6. Eigenvalue curves (l=0·5): (a) end follower force (a=1·0); (b), intermediate follower force
(a=0·75).

From the above expression of K, we can realize that the element with C1 continuity must
be used. Thus, in the present study, the Hermite element is used in the finite element
formulation.

3. 

We observed that the critical load for the dynamic stability for 4×4 elements model
was different only by 1% or so from that of 6×6 elements model. Hence, from now on,
we will examine the dynamic stability based on the results by using the 4×4 elements
model.

The dynamic stability of a thin plate is known to be very sensitive to aspect ratios. Now,
we will investigate the transition of critical load value for dynamic stability with respect
to the change of aspect ratios.

3.1. Large aspect ratio case
Figure 3 shows eigenvalue curves in the case of l=2·0 and n=0·3, where l is the aspect

ratio. The lowest three eigenvalues are all zeros, corresponding to rigid body modes and
they do not cause any destructive behavior to the structure. So, the rigid body modes are
not illustrated. Figure 3(a) is the end edge follower force case (a=1·0) and is in accordance
with the result of reference [9]. As shown in this figure, there are critical load QF1 indicating
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weak dynamic instability and QF2 indicating strong dynamic instability. Although
instability exists after QF1, the value of the imaginary part of eigenvalue is very small and
unstable behavior is maintained temporarily. Compared with the case QF2, QF1 is not
important and weak stability often vanishes when structural damping is considered. On
the other hand, weak stability doesn’t appear in Figure 3(b) which is the case of
intermediate follower force case at 3/4 section of the plate. Compared with the end follower
force case, Figure 3(b) shows that the value of the critical load for dynamic instability
becomes larger though divergence by one of the eigenvalues becoming zero first.

Figure 4 shows the critical loads for varying aspect ratios from 1 to 10 in the case v=0·3.
Generally, the more the tensile region increases, the larger the value of critical force for
dynamic stability grows.

3.2. Small aspect ratio case
Figure 5 shows critical loads with varying aspect ratios ranging from 0·1 to 1·0. Here,

the end follower force case (a=1·0) intersects with the intermediate follower force case
(a=0·75) which is different from the case in section 3.1. This means that it is not always
true that large tensile regions cause the increase of dynamic stability. In the small aspect
ratio case, critical forces do not follow a smooth curve, and change radically with small
changes of aspect ratio. This is due to the fact that the two modes which cause dynamic
instability by converging as complex conjugate are not constant and can be changed by
small aspect ratio change, therefore, the critical load does not have a constant tendency.
The two modes which determine dynamic instability can be regarded as the characteristic
of dynamic instability for this aspect ratio region. If the interval of aspect ratio in Figure
5 is denser, more intersect points may be shown. From Figure 5 we can say that in this
aspect ratio region, the characteristic of this system is affected by the change of location
of follower force as well as aspect ratio of the plate. Hence, sometimes the value of the
critical load in more tensile region cases can be much smaller than that of less tensile region
cases. But, in this case, the stability for the a=0·5 case increases distinctly.

Figure 6 shows eigencurves in the l=0·5 case. In Figure 6(a), as the end follower force
case, third and fifth eigenvalues meet each other and bring about the first dynamic
instability. However, in Figure 6(b), for the intermediate follower force case at a=0·75,
the third and fifth eigenvalues which cause dynamic instability in Figure 6(a) do not meet
each other. In addition, the two eigenvalues which make second dynamic instability in
Figure 6(a) cause first dynamic instability with a smaller value of critical force in Figure
6(b). Though the value of critical load is smaller in the end follower force case, the two
modes which cause first dynamic instability are different in two cases. Hence, it is
considered that each case must be examined with extra attention.

4. 

The analysis of a completely free plate subjected to intermediate follower force can be
summarized as follows.

In the large aspect ratio range, the more the tensile region grows, the more the dynamic
stability increases due to the fact that the cause of dynamic instability is bending due to
compressive loading. In addition, as aspect ratio grows, the value of critical force converges
at a constant value which is in accordance with the beam model. So, in the case of
sufficiently large values such as 10, the plate can be considered as a beam.

In a small aspect ratio range, it cannot be said that the dynamic stability increases in
proportion to tensile region of the plate. In this case, the characteristic of dynamic stability
is very sensitive to the change of aspect ratio and the location of follower force. Hence,
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as the value of critical load for dynamic instability varies with the location of follower
force, it is considered that each case must be examined with extra attention.
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